Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(36): eadg3469, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37683004

RESUMO

Influenza virus-specific tissue-resident memory (Trm) CD8+ T cells located along the respiratory tract provide cross-strain protection against a breadth of influenza viruses. We show that immunization with a single-cycle influenza virus vaccine candidate (S-FLU) results in the deposition of influenza virus nucleoprotein (NP)-specific CD8+ Trm along the respiratory tract that were more cross-reactive against viral variants and less likely to drive the development of cytotoxic T lymphocyte (CTL) escape mutants, as compared to the lung memory NP-specific CD8+ T cell pool established following influenza infection. This immune profile was linked to the limited inflammatory response evoked by S-FLU vaccination, which increased TCR repertoire diversity within the memory CD8+ T cell compartment. Cumulatively, this work shows that S-FLU vaccination evokes a clonally diverse, cross-reactive memory CD8+ T cell pool, which protects against severe disease without driving the virus to rapidly evolve and escape, and thus represents an attractive vaccine for use against rapidly mutating influenza viruses.


Assuntos
Vacinas contra Influenza , Influenza Humana , Humanos , Linfócitos T CD8-Positivos , Influenza Humana/prevenção & controle , Imunização , Levanogestrel , Nucleoproteínas/genética , Pulmão
2.
Artigo em Inglês | MEDLINE | ID: mdl-36154657

RESUMO

As part of its role in the World Health Organization's (WHO) Global Influenza Surveillance and Response System (GISRS), the WHO Collaborating Centre for Reference and Research on Influenza in Melbourne received a total of 2,393 human influenza positive samples between 1 January 2020 and 31 December 2021 (2020: n = 2,021 samples; 2021: n = 372 samples). Viruses were analysed for their antigenic, genetic and antiviral susceptibility properties. Selected viruses were propagated in qualified cells or embryonated hen's eggs for potential use in seasonal influenza virus vaccines. During 2020-2021, influenza A viruses (A(H1N1)pdm09 in 2020 and A(H3N2) in 2021) predominated over influenza B viruses. In 2020, the majority of A(H1N1)pdm09, A(H3N2) and influenza B viruses analysed at the Centre were found to be antigenically similar to the respective WHO recommended vaccine strains for the southern hemisphere in 2020. In 2021, the majority of A(H1N1)pdm09 and A(H3N2) viruses were found to be antigenically distinct relative to the WHO recommended vaccine strains for the southern hemisphere in 2021. Of the influenza B viruses analysed at the Centre, 46.7% were found to be antigenically distinct to the respective WHO recommended vaccine strains. Of 1,538 samples tested for susceptibility to the neuraminidase inhibitors oseltamivir and zanamivir (in 2020, n = 1,374; in 2021, n = 164), two A(H1N1)pdm09 viruses showed highly reduced inhibition against oseltamivir, and one A(H1N1)pdm09 virus showed highly reduced inhibition against zanamivir. All of these samples were received in 2020.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H3N2 , Vírus da Influenza B , Influenza Humana , Antivirais/farmacologia , Austrália/epidemiologia , Farmacorresistência Viral/genética , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza B/genética , Vacinas contra Influenza , Influenza Humana/epidemiologia , Influenza Humana/virologia , Neuraminidase , Oseltamivir/farmacologia , Organização Mundial da Saúde , Zanamivir/farmacologia
3.
NPJ Vaccines ; 6(1): 149, 2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34887440

RESUMO

Influenza vaccines are utilised to combat seasonal and pandemic influenza. The key to influenza vaccination currently is the availability of candidate vaccine viruses (CVVs). Ideally, CVVs reflect the antigenic characteristics of the circulating virus, which may vary depending upon the isolation method. For traditional inactivated egg-based vaccines, CVVs are isolated in embryonated chicken eggs, while for cell-culture production, CVV's are isolated in either embryonated eggs or qualified cell lines. We compared isolation rates, growth characteristics, genetic stability and antigenicity of cell and egg CVV's derived from the same influenza-positive human clinical respiratory samples collected from 2008-2020. Influenza virus isolation rates in MDCK33016PF cells were twice that of eggs and mutations in the HA protein were common in egg CVVs but rare in cell CVVs. These results indicate that fully cell-based influenza vaccines will improve the choice, match and potentially the effectiveness, of seasonal influenza vaccines compared to egg-based vaccines.

4.
Artigo em Inglês | MEDLINE | ID: mdl-34493178

RESUMO

ABSTRACT: As part of its role in the World Health Organization's (WHO) Global Influenza Surveillance and Response System (GISRS), the WHO Collaborating Centre for Reference and Research on Influenza in Melbourne received a record total of 9,266 human influenza positive samples during 2019. Viruses were analysed for their antigenic, genetic and antiviral susceptibility properties. Selected viruses were propagated in qualified cells or embryonated hen's eggs for potential use in seasonal influenza virus vaccines. In 2019, influenza A(H3N2) viruses predominated over influenza A(H1N1)pdm09 and B viruses, accounting for a total of 51% of all viruses analysed. The majority of A(H1N1)pdm09, A(H3N2) and influenza B viruses analysed at the Centre were found to be antigenically similar to the respective WHO recommended vaccine strains for the Southern Hemisphere in 2019. However, phylogenetic analysis indicated that a significant proportion of circulating A(H3N2) viruses had undergone genetic drift relative to the WHO recommended vaccine strain for 2019. Of 5,301 samples tested for susceptibility to the neuraminidase inhibitors oseltamivir and zanamivir, four A(H1N1)pdm09 viruses showed highly reduced inhibition with oseltamivir, one A(H1N1)pdm09 virus showed highly reduced inhibition with zanamivir and three B/Victoria viruses showed highly reduced inhibition with zanamivir.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Animais , Austrália/epidemiologia , Galinhas , Feminino , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Filogenia , Organização Mundial da Saúde
5.
Artigo em Inglês | MEDLINE | ID: mdl-31203585

RESUMO

As part of its role in the World Health Organization's (WHO) Global Influenza Surveillance and Response System (GISRS), the WHO Collaborating Centre for Reference and Research on Influenza in Melbourne received a record total of 5866 human influenza positive samples during 2017. Viruses were analysed for their antigenic, genetic and antiviral susceptibility properties and were propagated in qualified cells and hens' eggs for use as potential seasonal influenza vaccine virus candidates. In 2017, influenza A(H3) viruses predominated over influenza A(H1)pdm09 and B viruses, accounting for a total of 54% of all viruses analysed. The majority of A(H1)pdm09, A(H3) and influenza B viruses analysed at the Centre were found to be antigenically similar to the respective WHO recommended vaccine strains for the Southern Hemisphere in 2017. However, phylogenetic analysis indicated that the majority of circulating A(H3) viruses had undergone genetic drift relative to the WHO recommended vaccine strain for 2017. Of 3733 samples tested for susceptibility to the neuraminidase inhibitors oseltamivir and zanamivir, only two A(H1)pdm09 viruses and one A(H3) virus showed highly reduced inhibition by oseltamivir, while just one A(H1)pdm09 virus showed highly reduced inhibition by zanamivir.


Assuntos
Antígenos Virais/imunologia , Antivirais/farmacologia , Vírus da Influenza A/imunologia , Vírus da Influenza B/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/virologia , Animais , Austrália/epidemiologia , Galinhas , Cães , Farmacorresistência Viral , Ovos , Feminino , Humanos , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/genética , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza B/efeitos dos fármacos , Vírus da Influenza B/genética , Vírus da Influenza B/isolamento & purificação , Influenza Humana/tratamento farmacológico , Influenza Humana/prevenção & controle , Células Madin Darby de Rim Canino , Neuraminidase/antagonistas & inibidores , Oseltamivir/farmacologia , Filogenia , Organização Mundial da Saúde , Zanamivir/farmacologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-30739429

RESUMO

As part of its role in the World Health Organization's (WHO) Global Influenza Surveillance and Response System (GISRS), the WHO Collaborating Centre for Reference and Research on Influenza in Melbourne received a total of 4,247 human influenza positive samples during 2016. Viruses were analysed for their antigenic, genetic and antiviral susceptibility properties and also propagated in qualified cells and hens eggs for potential seasonal influenza vaccine virus candidates. In 2016, influenza A(H3) viruses predominated over influenza A(H1)pdm09 and B viruses, accounting for a total of 51% of all viruses analysed. The vast majority of A(H1)pdm09, A(H3) and influenza B viruses analysed at the Centre were found to be antigenically similar to the respective WHO recommended vaccine strains for the Southern Hemisphere in 2016. However, phylogenetic analysis of a selection of viruses indicated that the majority of circulating A(H3) viruses had undergone some genetic drift relative to the WHO recommended strain for 2016. Of more than 3,000 samples tested for resistance to the neuraminidase inhibitors oseltamivir and zanamivir, six A(H1)pdm09 viruses and two B/Victoria lineage viruses showed highly reduced inhibition to oseltamivir.

7.
Diagn Microbiol Infect Dis ; 93(4): 311-317, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30528425

RESUMO

During 2016/2017, several antigenically and genetically distinct variant viruses of the influenza B/Victoria/2/87-lineage (B/Vic) viruses, which have either deletions or mutations in the haemagglutinin (HA) emerged and co-circulated with other influenza B viruses from both the B/Vic and B/Yamagata/16/88-lineages (B/Yam). In this study we developed a pyrosequencing assay that can detect and differentiate multiple influenza B virus variants currently in circulation. The assay targets a region of HA sequence that is unique for each of the B/Yam, B/Vic and B/Vic variant viruses. Our results demonstrated that it is a rapid, robust, high-throughput assay, highly sensitive and specific in differentiating among the B/Yam, B/Vic and B/Vic variant viruses, giving it an advantage over an existing rRT-PCR method. It works well for influenza virus isolates as well as original clinical respiratory specimens, and can therefore be used to provide important information for surveillance by closely monitoring the spread of these B/Vic variants.


Assuntos
Técnicas de Genotipagem/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Vírus da Influenza B/classificação , Vírus da Influenza B/isolamento & purificação , Influenza Humana/virologia , Humanos , Vírus da Influenza B/genética , Epidemiologia Molecular/métodos , Sensibilidade e Especificidade , Fatores de Tempo
8.
Commun Dis Intell Q Rep ; 41(2): E150-E160, 2017 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-28899310

RESUMO

As part of its role in the World Health Organization's (WHO) Global Influenza Surveillance and Response System, the WHO Collaborating Centre for Reference and Research on Influenza in Melbourne received a total of 5,557 influenza positive samples during 2015. Viruses were analysed for their antigenic, genetic and antiviral susceptibility properties. In 2015, influenza B viruses predominated over influenza A(H1)pdm09 and A(H3) viruses, accounting for a total of 58% of all viruses analysed. The vast majority of A(H1)pdm09, A(H3) and influenza B viruses analysed at the Centre were found to be antigenically similar to the respective WHO recommended vaccine strains for the Southern Hemisphere in 2015. However, phylogenetic analysis of a selection of viruses indicated that the majority of circulating A(H3) viruses were genetically distinct from the WHO recommended strain for 2015, resulting in an update to the recommended vaccine strain for the Southern Hemisphere for 2016. With an increasing predominance of B/Victoria lineage viruses over B/Yamagata lineage viruses through the course of 2015, WHO also updated the recommended influenza B strain in the trivalent influenza vaccine for 2016. Of more than 3,300 samples tested for resistance to the neuraminidase inhibitors oseltamivir and zanamivir, only 1 A(H1)pdm09 virus showed highly reduced inhibition by oseltamivir. The Centre undertook primary isolation of candidate vaccine viruses directly into eggs, and in 2015 a total of 45 viruses were successfully isolated in eggs.


Assuntos
Vírus da Influenza A Subtipo H1N1/classificação , Vírus da Influenza A Subtipo H3N2/classificação , Vírus da Influenza B/classificação , Influenza Humana/epidemiologia , Filogenia , África/epidemiologia , Relatórios Anuais como Assunto , Antígenos Virais/genética , Antivirais/uso terapêutico , Ásia/epidemiologia , Austrália/epidemiologia , Farmacorresistência Viral/genética , Genótipo , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Vírus da Influenza B/genética , Vírus da Influenza B/imunologia , Vírus da Influenza B/isolamento & purificação , Vacinas contra Influenza/administração & dosagem , Influenza Humana/tratamento farmacológico , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Oseltamivir/uso terapêutico , Organização Mundial da Saúde , Zanamivir/uso terapêutico
9.
Front Microbiol ; 7: 1736, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27853455

RESUMO

Shipping influenza virus specimens, isolates or purified RNA is normally conducted at ultra-low temperatures using dry ice to ensure minimal degradation of the samples but this is expensive and requires special packaging and shipping conditions. Therefore, alternative methods for shipping influenza viruses or RNA at ambient temperatures would be desirable. The RNASound RNA Sampling Card (FortiusBio LLC, San Diego, CA, USA) is a device that enables specimens or isolates to be applied to a card, whereby viruses are inactivated, while RNA is preserved and purified RNA can also easily be eluted. To evaluate this card, we applied influenza virus cell culture isolate supernatants to either the RNASound card or Whatman Grade No. 1 filter paper (GE Healthcare, Rydalmere, NSW, Australia) and compared the preservation to that of material stored in liquid form. Preservation was tested using influenza A and B viruses at two different storage temperatures [cool (2-8°C) or room temperature (18-22°C)] and these were compared with control material stored at -80°C, for 7, 14, or 28 days. The quality of the RNA recovered was assessed using real time RT-PCR and Sanger sequencing. The RNASound card was effective in preserving influenza RNA at room temperature for up to 28 days, with only a minor change in real-time RT-PCR cycle threshold values for selected gene targets when comparing between viruses applied to the card or stored at -80°C. Similar results were obtained with filter paper, whilst virus in liquid form performed the worst. Nevertheless, as the RNASound card also has the capability to inactivate viruses in addition to preserving RNA at room temperature for many weeks, this makes it feasible to send samples to laboratories using regular mail, and thus avoid the need for expensive shipping conditions requiring biohazard containers and dry ice. Moreover, the quick and simple RNA recovery from the RNASound card allows recipient labs to obtain RNA without the need for special reagents or equipment.

10.
J Virol ; 90(21): 9674-9682, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27535050

RESUMO

Avian influenza virus (AIV) surveillance in Antarctica during 2013 revealed the prevalence of evolutionarily distinct influenza viruses of the H11N2 subtype in Adélie penguins. Here we present results from the continued surveillance of AIV on the Antarctic Peninsula during 2014 and 2015. In addition to the continued detection of H11 subtype viruses in a snowy sheathbill during 2014, we isolated a novel H5N5 subtype virus from a chinstrap penguin during 2015. Gene sequencing and phylogenetic analysis revealed that the H11 virus detected in 2014 had a >99.1% nucleotide similarity to the H11N2 viruses isolated in 2013, suggesting the continued prevalence of this virus in Antarctica over multiple years. However, phylogenetic analysis of the H5N5 virus showed that the genome segments were recently introduced to the continent, except for the NP gene, which was similar to that in the endemic H11N2 viruses. Our analysis indicates geographically diverse origins for the H5N5 virus genes, with the majority of its genome segments derived from North American lineage viruses but the neuraminidase gene derived from a Eurasian lineage virus. In summary, we show the persistence of AIV lineages in Antarctica over multiple years, the recent introduction of gene segments from diverse regions, and reassortment between different AIV lineages in Antarctica, which together significantly increase our understanding of AIV ecology in this fragile and pristine environment. IMPORTANCE: Analysis of avian influenza viruses (AIVs) detected in Antarctica reveals both the relatively recent introduction of an H5N5 AIV, predominantly of North American-like origin, and the persistence of an evolutionarily divergent H11 AIV. These data demonstrate that the flow of viruses from North America may be more common than initially thought and that, once introduced, these AIVs have the potential to be maintained within Antarctica. The future introduction of AIVs from North America into the Antarctic Peninsula is of particular concern given that highly pathogenic H5Nx viruses have recently been circulating among wild birds in parts of Canada and the Unites States following the movement of these viruses from Eurasia via migratory birds. The introduction of a highly pathogenic influenza virus in penguin colonies within Antarctica might have devastating consequences.


Assuntos
Vírus da Influenza A/genética , Vírus da Influenza A/isolamento & purificação , Influenza Aviária/virologia , Animais , Animais Selvagens/virologia , Aves/virologia , Canadá , Genes Virais/genética , Variação Genética/genética , Filogenia , Spheniscidae/virologia
11.
J Clin Virol ; 68: 43-8, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26071334

RESUMO

BACKGROUND: Full genome sequencing of influenza A viruses (IAV), including those that arise from annual influenza epidemics, is undertaken to determine if reassorting has occurred or if other pathogenic traits are present. Traditionally IAV sequencing has been biased toward the major surface glycoproteins haemagglutinin and neuraminidase, while the internal genes are often ignored. Despite the development of next generation sequencing (NGS), many laboratories are still reliant on conventional Sanger sequencing to sequence IAV. OBJECTIVES: To develop a minimal and robust set of primers for Sanger sequencing of the full genome of IAV currently circulating in humans. STUDY DESIGN: A set of 13 primer pairs was designed that enabled amplification of the six internal genes of multiple human IAV subtypes including the recent avian influenza A(H7N9) virus from China. Specific primers were designed to amplify the HA and NA genes of each IAV subtype of interest. Each of the primers also incorporated a binding site at its 5'-end for either a forward or reverse M13 primer, such that only two M13 primers were required for all subsequent sequencing reactions. RESULTS: This minimal set of primers was suitable for sequencing the six internal genes of all currently circulating human seasonal influenza A subtypes as well as the avian A(H7N9) viruses that have infected humans in China. CONCLUSIONS: This streamlined Sanger sequencing protocol could be used to generate full genome sequence data more rapidly and easily than existing influenza genome sequencing protocols.


Assuntos
Genoma Viral , Vírus da Influenza A/genética , RNA Viral/genética , Análise de Sequência de DNA/métodos , Animais , Primers do DNA/genética , Humanos , Vírus da Influenza A/isolamento & purificação , Influenza Humana/virologia , Infecções por Orthomyxoviridae/veterinária , Infecções por Orthomyxoviridae/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...